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Spectral multigrid methods are demonstrated to be a competitive technique for solving the 
transonic potential-flow equation. The spectral discretization, relaxation scheme, and multigrid 
techniques are described in detail. Significant departures from current approaches are first 
illustrated on several linear problems. The principal applications and examples, however, are 
for compressible potential flow. these examples include the relatively challenging case of 
supercritical flow over a lifting airfoil. 

I. INTRODUCTION 

Interest in transonic aerodynamics endures because most commercial and military 
aircraft operate predominantly in the transonic regime. The design and analysis of 
transonic wings and related configurations have been carried out largely within the 
framework of the transonic small-perturbation equation and the full-potential 
equation. Apart from their relative simplicity, the popularity of these flow models is 
due to their adequate representation of flow features of practical importance. For 
instance, the pressure rise across an isentropic shock in these models is sufficiently 
accurate for normal Mach numbers ahead of the shock less than 1.3. Naturally, if 
other design considerations produce strong shocks and/or complex vertical flow, then 
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recourse to the Euler equations is appropriate. Indeed, Euler solutions to transonic 
flow problems have attracted serious attention as of late, and they will surely gain 
increasing popularity as they become more competitive with potential solutions. 
However, for many configurations of engineering interest, potential flow predictions 
with asymptotically first-order weak viscous-inviscid interaction give solutions of 
more than adequate accuracy [ 11. When strong shocks and/or vorticity are of 
dominant importance in the flow field, weak viscous-inviscid interaction is no longer 
an adequate model. Implementation of strong interaction models is relatively crude at 
this time, and, until substantial improvements have been made, the potential 
formulation will retain the most favorable accuracy-to-cost ratio for a wide range of 
practical transonic flow problems. 

The main difficulty in the numerical solution of the steady transonic flow problem 
has been the mixed elliptic-hyperbolic nature allowing for the presence of discon- 
tinuities. The initial breakthrough in overcoming this difficulty was made only in the 
early 1970s by Murman and Cole [2] who introduced a type-dependent difference 
scheme for solving the transonic small-perturbation equation. Following this 
breakthrough there have been many developments in the computation of transonic 
flows. The survey lectures of Ballhaus [3] and Jameson [4] present a detailed review 
of these developments up to 1976. Since then most research on numerical methods for 
the steady-state full-potential equation has focused on accelerating iterative methods. 
Much of the progress has been made by relating the relaxation scheme to a time- 
dependent differential equation and then using the theory of numerical integration of 
ordinary or partial-differential equations to estimate the optimal relaxation 
parameters. Ballhaus et al. [5] developed approximate factorization schemes, AFl 
and AF2, which, applied to the transonic small-perturbation equation, yielded rapid 
convergence. The AFl scheme is analogous to the Douglas-Gunn alternate direction 
implicit (ADI) method for the parabolic equation. The AF2 scheme, which is 
similarly related to a hyperbolic equation, has been extended by Holst to the full- 
potential equation in conservation form [6] and to three dimensions [7]. Another 
variant of AF2 is the approximate factorization scheme AF3 developed by Baker [8] 
(independently of Holst) for the full-potential equation in the nonconservative form. 
The success of all these schemes over the practical range of transonic flow conditions 
is still problem-dependent. Catherall [9] discusses the basic principle of the approx- 
imate factorization schemes for the two-dimensional steady-potential equation, and 
describes a procedure for constructing optimal algorithms. Wong and Hafez [lo] 
propose a preconditioned conjugate gradient method which is at least twice as fast as 
pure successive-line overrelaxation (SLOR). Some other iterative schemes are 
assessed by Doria and South [ 111. Another fast method is the multigrid technique, 
first applied by South and Brandt [12] to the transonic small-perturbation equation 
with SLOR as a basic iterative scheme. Recently, Jameson [ 131 developed the 
multigrid procedure to accelerate convergence of the full-potential solution by an 
AD1 method. Despite the existence of quite a few efficient methods of potential 
solution, controlled comparisons are lacking. 

The computer time required to obtain numerical solutions for two-dimensional 
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potential flows is now so small that there is practically no incentive for developing 
more efficient schemes. However, for three-dimensional flows existing methods are 
still so costly that a substantially more efficient solution algorithm would have great 
practical importance. Unlike the two-dimensional case, computer storage is a crucial 
consideration in weighing the efficiency of a scheme. Pseudospectral methods have 
demonstrated their capacity for producing equivalent accuracy with far fewer grid 
points than standard second-order or even fourth-order methods, not only for smooth 
flows but also, more recently, for the Euler equations [14]. The first pseudospectral 
two-dimensional potential flow solutions were obtained by Streett [ 151, who 
established that equivalent solutions were in fact obtained for potential flows with far 
fewer grid points than required by standard methods. However, his solution technique 
was clearly in need of acceleration, particularly for supercritical flows. In this paper 
we describe an acceleration technique, based on the spectral multigrid methods 
developed by Zang et al. [ 16, 171, that has significantly improved the rate of 
convergence of the pseudospectral discretization of the full-potential equation. In fact, 
the spectral multigrid scheme is so efficient that the preliminary version described 
here is highly competitive with the finite-difference schemes. 

Since the application of spectral methods to compressible flows is still a fairly 
novel approach, most readers are likely to be unfamiliar with either the practical 
details of spectral methods or the nuances of numerical methods for compressible 
flows. Moreover, spectral multigrid methods themselves are still in the formative 
stage. The promising nature of the present results warrants a reasonably complete 
and self-contained description of the numerical method. 

We begin by describing a means of implementing pseudospectral differentiation, 
which, although asymptotically inefficient, is nonetheless preferable for problems on 
moderately-sized grids. This is followed by descriptions of the essential features of 
spectral multigrid methods and of the relaxation schemes. These methods are then 
illustrated on several linear problems. An explanation of the potential-flow problem 
and its pseudospectral approximation is given next. Finally, we report on the perfor- 
mance of the spectral multigrid method on both subcritical and supercritical potential 
flows. 

II. SPECTRAL METHODS USING MATRIX MULTIPLES 

The Fast Fourier Transform (FFT) has usually been cited as a key element in the 
efficiency and hence the implementation of spectral methods. In the pseudospectral 
sort of calculations, discrete Fourier methods are commonly used in the evaluation of 
derivatives. However, under some circumstances it is actually faster to use conven- 
tional matrix-vector multiplications for this purpose than to resort to transform 
techniques. An obvious requirement is that the problem be of moderate size. There 
are many significant engineering applcations which meet this requirement. The tran- 
sonic flow application, which is the main thrust of this paper, is one such example. 
Even in circumstances which most favor transform techniques-on grids with 2k 
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points-the matrix-multiply approach (using nothing but Fortran) has proven to be 
significantly faster than the transform method (employing assembly language FFTs). 
Precise comparisons will be given below. 

In a pseudospectral method the fundamental representation of the solution is in 
physical space. The quantities which are stored are the values of the function u(x) at 
special collocation points xj. Derivatives, however, are evaluated spectrally. The 
values of the function are passed through a suitable discrete transform to produce the 
representation of the function in transform (wavenumber) space. The actual differen- 
tiation takes place in wavenumber space. Then an inverse transform is applied to 
yield the pseudospectral approximation to the derivatives of the function at the 
collocation points. Let U denote the vector of values of the function at the collocation 
points. Then the approximation to the derivative at these points may be written 

OUT (1) 
0 = C- ‘DC, (2) 

with C representing the discrete transform and D representing differentiation in 
wavenumber space. 

The most well-known pseudospectral method is based upon Fourier series. Let the 
interval of interest be [0,27c] and use the collocation points 

27r.j 
xi = - M 

j = 0, l)...) M - 1. 

Then 

D,, = ik d,,, 

=o 

k=-r+ I,...,;- 1 

I=-;,...,;- 1 

(c- lJjk = pikiM. 

(3) 

(4) 

(5) 

(6) 

The Fourier series differentiation matrix may be constructed by the matrix 
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multiplications implied by Eq. (2). Alternatively, one may simply use the explicit 
formula given in Eqs. (8) and (9) of [ 161 for the elements of 0. 

Once the matrix 0 has been constructed, the cost of evaluating a derivative by the 
matrix-vector product OU is B(M’). The transform technique reduces this to 
B(M In M). However, two transforms are required and the constant in the @‘@I In M) 
factor is larger than the one in the B(M*) case. 

Chebyshev pseudospectral methods have been the most widely used ones for 
nonperiodic boundary conditions. The standard interval is [-1, 1 ] and the collocation 
points are 

xj = cos Jz 
N 

j = 0, l,..., N. 

Then 

where 

Moreover, 

cw=&,,$ k,j=O,j ,..., N, 
k J 

Ej = 2 j=OorN 

= 1 otherwise. 

D,,2 
ck 

l>k+ 1 andl=k+ 1 (mod2) 

=o otherwise, 

where 

cj = 2 j=O 

= 1 otherwise 

and 

lrjk 
(c-l),, = cos 7. 

(8) 

(9) 

(10) 

(11) 

An explicit formula is available in Eqs. (49) and (50) of [ 161 for this Chebyshev 
differentiation matrix. 

581/51/l-4 
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III. SPECTRAL MULTIGRID FUNDAMENTALS 

Overview of Multigrid Algorithms 

The problems of interest here are scalar partial differential boundary value 
problems. The PDE can be written in the general form 

9(u) =f, (13) 

where u(x, y) is the unknown function,f(x, JJ) is some source term, and 9 is a partial- 
differential operator which might be nonlinear in the unknown U. The corresponding 
discrete problem will be written 

in obvious notation. 

L(U)=F (14) 

Multigrid solution schemes for Eq. (14) involve combining relaxation sweeps for 
that equation with relaxation sweeps for related problems on coarser grids. Let I’ 
denote an approximation to U. The essential property for the relaxation scheme is 
that it preferentially damp the high-frequency components of the error V- U. Then 
after a small number of relaxations the error will have so little high-frequency content 
that it can be approximated well on a coarser grid. Solutions on the coarser grid are 
relatively inexpensive to obtain, especially if this strategy is applied recursively by 
using still coarser grids as needed. 

Let us consider just the interplay between two grids. The fine-grid problem is 
written 

Lf( Uf) = Ff. (15) 

The shift to the coarse grid occurs after the fine-grid approximation Vf has been 
sufficiently smoothed by the relaxation process; i.e., after the high-frequency content 
of the error vf - Uf has been sufficiently reduced. The related coarse-grid problem is 

LC(Uc) = FC, (16) 

where 

FC=R[Ff-Lf(Vf)] +L’(Rvf). (17) 

The restriction operator R interpolates a function from the fine grid to the coarse 
grid. The coarse-grid operator and solution are denoted by Lc and UC, respectively. 
After an adequate approximation V’ to the coarse-grid problem has been obtained, 
the fine-grid approximation is corrected via 

Vft I”+ P(Vc -RF). (18) 

The prolongation operator P interpolates a function from the coarse grid to the fine 
grid. 
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The choice of the coarse-grid problem is based upon rewriting Eq. (15) as 

Lf( Uf) = [Ff - Lf( vf) ] + Lf( vf). (19) 

The term in brackets is the fine-grid residual. Since it has been presumed to be 
smooth, its coarse-grid approximation is clearly 

R[Ff-Lf(Vf)]. (20) 

Eqs. (16) and (17) then follow by replacing the remaining fine-grid quantities with 
appropriate coarse-grid ones. 

The quantity 

Wc=Uc-Ryf 

is the coarse-grid correction. Equations (16) to (18) are equivalent to 

(21) 

L’(Rvf+ WC)-L’(Rv)=R[F’-Lf(Vf)] (22) 
V’t vf+ PZC, (23) 

where Z’ is the approximation to WC. For linear problems, Eq. (22) reduces to 

LCWC=R[Ff-I/(p)]. (24) 

This overview has, of course, been based upon the paper by Brandt [ 181, albeit in 
notation popularized by Hackkbush [ 191. The particular choices of the interpolation 
and coarse-grid operators used in the present spectral multigrid work are described in 
the following subsections. This description is given for one-dimensional problems. 
The extension to higher dimensions is obvious. These details are followed by a 
discussion of the relaxation schemes. 

Interpolation Operators 
The spectral multigrid interpolation operators which were proposed in [16] for 

periodic coordinates amount to trigonometric interpolation: Given a function on a 
coarse grid (with MC points), compute the discrete Fourier coefftcients and then use 
the resulting discrete Fourier series to construct the interpolated function on the fine 
grid (with Mf points). This may be accomplished by performing two FFTs. An 
explicit representation of the prolongation operator is 

1 Md2- 1 

‘lk=F __ c 
,2niKilM,-k/M,) 

9 
c I- Md2+1 

(25) 

which sums to yield 

(26) 
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where 

S(r)=M,- 1 I integer 

= sin(rcrM,) cot(7rr) - cos(nrMJ otherwise. 

The corresponding restriction operator is essentially the adjoint of this: 

(27) 

Interpolation for nonperiodic coordinates employs Chebyshev series in an 
analogous fashion. The prolongation operator is 

Pjk = &g; ; cos - cos -, 
f 

F 
c 

(29) 

where Fk is defined by Eq. (9) with N = N,. This sums to 

where 

Pj~=~[Q(~-t)+Q(~+~)], (30) 

Q(r) = % r integer 

= f - f cos(*rNc) + + cos (s(Nc+ 1)) sin(T) csc(F) otherwi6z.1) 

We will have occasion to use two distinct restriction operators. One is sometimes 
used in forming the coarse-grid operator and is obtained by applying Chebyshev 
restriction in the obvious fashion. It will be denoted by R(O) and it is given by 

R;;’ = 

where Fk is defined by Eq. (9) with N = N, and 

Q(r) = a + +- I integer 

(32) 

=;++cos T(N,+ 1)) sin(F) csc(F) otherwise. 
(33) 
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The other is used for interpolation, denoted by Rc), and defined by the adjoint 
requirement : 

where Ek is defined by Eq. (9) with N = N,. 

Coarse-Grid Operator 

A typical term in the class of problem considered here is 

$[a(u,x)-$]. 

(34) 

(35) 

The discrete operator which represents its fine-grid pseudospectral approximation is 

L’=OAO, (36) 

where 0 is given by Eq. (2) and A is the diagonal matrix 

Aj, = a(Uj, Xi) 6j.k. (37) 

Many multigrid investigators, e.g., [ 19-211, have advocated choosing the coarse- 
grid operator so that 

Lc = RLfP. (38) 

Both the Fourier and the Chebyshev first-derivative operators, defined by 
Eqs. (2)-( 12), satisfy 

0” = RO’P, (39) 

where R = R(O) is chosen in the Chebyshev case. However, Eq. (38) itself is not 
satisfied if the coarse-grid analog of Eq. (36) is used to define Lc, except in the trivial 
case for which a(u, x) is a constant. On the other hand, much of the efficiency of the 
pseudospectral method is lost if Eq. (38) is used to define the coarse-grid operator. 
Some compromises were suggested in [ 171. The most satisfactory one seems to be 
using Eq. (36) but with the restricted values of a(uj, xj) in place of the pointwise 
values. The Chebyshev restrictions should be performed with R(O). 

Boundary Conditions 

In the applications that follow, three types of boundary conditions appear: 
Periodic, Dirichlet, and Neumann. Periodic boundary conditions are automatically 
satisfied by the use of Fourier series. Fully-periodic problems contain some subtleties 
that are discussed in [ 171. 
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Dirichlet boundary conditions are handled effortlessly. The vector of unknowns 
should include the values at the boundary points in their natural locations. (This has 
the side effect of facilitating the programing of the Chebyshev interpolation.) On the 
fine grid, the desired boundary values are inserted into the appropriate locations and 
these values are not modified during the relaxation. On the coarser grids, the 
appropriate boundary values are the ones which fall out of the restriction process. 

Neumann boundary conditions are a bit touchier. We have enforced them by incor- 
porating the Neumann boundary condition into the discrete operator. Suppose that 
there is a Neumann boundary condition at x = -1. In the evaluation of a term such 
as appears in Eq. (35), the first stage is the computation of du/dx at all the 
collocation points. In general, this value will not match the desired boundary value. 
The boundary condition is enforced by resetting the value of du/dx at x = -1 to the 
desired value before proceeding with the multiplication by a(u, x) and then the final 
differentiation. This produces the desired boundary condition in the converged 
solution. This approach has the advantage of ensuring that the boundary condition 
appears in the discrete operator with a consistent scaling. A much less effective alter- 
native is to replace the differential equation at x = -1 with the condition that du/dx 
is the prescribed boundary value. The disadvantage of this approach is that this 
boundary equation is far out of scale with the rest of the operator. This alternative 
has in fact been tried on some of our test problems and it has resulted in a substantial 
deterioration of the convergence rate. 

IV. RELAXA~ON SCHEMES 

The crucial property that a relaxation scheme should possess for use in a multigrid 
algorithm is that it damp effectively the high-frequency components of the error. It 
need not be especially effective in the low-frequency range, so long as it does not 
amplify any components. For spectral multigrid methods an additional requirement 
arises from the global nature of the approximation: The fast evaluation of derivatives 
demands that the relaxation be simultaneous rather than successive; e.g., the Jacobi 
method can be implemented efficiently, whereas the Gauss-Seidel method cannot. 

A class of iterative schemes that meets these requirements is based upon 
approximate-factorization techniques [5]. These methods are especially attractive 
because they have been employed in some of the most successful finite-difference 
solutions to the delicate transonic potential-flow problem [7, 131. Moreover, the latter 
work demonstrated their effectiveness in the multigrid context, albeit for a purely 
finite-difference approximation. A review of the computational transonics literature 
suggests that the most fruitful interpretation of approximate-factorization schemes for 
this mixed elliptic-hyperbolic problem is in terms of their corresponding time- 
dependent partial-differential equation. This is the approach that will be taken below. 

An alternative and perhaps more traditional interpretation for linear, elliptic 
problems is in terms of preconditioning. The relaxation scheme proposed in [ 171 for a 
spectral multigrid method for such problems was interpreted as an incomplete LU 
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decomposition serving as a preconditioning for Richardson’s iteration. A brief 
description of this scheme is included here since it will serve as a comparison for the 
approximate-factorization method on one of the linear test problems. 

Richardson Iteration with Incomplete L U Decomposition 

A preconditioned Richardson iteration for solving Eq. (14) can be expressed as 

v+ v+wH-‘[F-L(v)], (40) 

where H is the preconditioning matrix and o is the relaxation parameter. The matrix 
H should be chosen so that it is an approximate inverse to L, but is easily invertible. 
The version recommended in [ 171 for linear problems is obtained by first 
constructing the matrix HFD which represents a standard second-order tinite- 
difference approximation to Y (see Eq. (13)) and then performing an incomplete LU 
decomposition of HFD . Details are provided in [ 171 along with a prescription for 
choosing the relaxation parameter w so that the high-frequency error components are 
damped preferentially. 

Approximate Factorization 

For this discussion it is convenient to rewrite IQ. (14) as 

M(U) = a (41) 

where, of course, 

M(U) = L(U) - F. (42) 

Next, view U not as the solution to Eq. (41), but rather as the steady-state solution to 
the evolution equation 

+4(u). 
This is surely sensible if P(u) is elliptic; for then, Eq. (43) represents the spatial 
discretization of a parabolic problem. Semi-implicit time-stepping procedures are 
desirable for such problems because of the severe explicit time-step limitations. (This 
is especially acute for pseudospectal discretizations employing Chebyshev series 
because of the very small spacing between the collocation points near the boundary.) 
The simplest practical time discretization of Eq. (43) is 

p+ 1) _ U(n) 

At 
= M(U’“‘) + J(p))(p+l) - UC”)), (44) 

where 

J(U) = g (U), (45) 
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and a superscript refers to a time level. Let 

1 
a=dt (46) 

and 
Au’“’ = U(n+ 1) _ U(n) > (47) 

and then rewrite Eq. (44) as 

[aI - J(v’“‘)] AU’“’ = M(U’“‘), (48) 

where I denotes the identity matrix. 
This motivates the relaxation scheme 

Vt V+ WAV, (49) 

where AV is the solution to 

[al--J(V)] AV=M(V). (50) 

In many cases the Jacobian J(v) can be split into the sum of two operators J,(V) and 
J,,(V), each involving derivatives in only the one coordinate direction indicated by the 
subscript. Approximate-factorization methods encompass various approximations to 
the left-hand side of Eq. (48). The most straightforward of these is 

[aI-J#)][aZ-Jy(v)] AV=aM(v), (51) 

in combination with Eq. (49). This is just the Douglas-Gunn version of AD1 [22]. It 
is commonly referred to as AFl for the transonic problem [5]. For second-order 
spatial discretizations, the term [aZ- J,(V)] leads to a set of tridiagonal 
systems-one for each value of y. The second left-hand side factor produces another 
set of tridiagonal systems. For pseudospectral discretizations, however, these systems 
are full; hence, Eq. (5 1) is still relatively expensive to invert. A compromise 
analogous to the one invoked in the incomplete LU decomposition preconditioning is 
to replace J, and J,, with their second-order finite-difference analogs, denoted by H, 
and H,, respectively: 

[aZ-H,(V)][aZ-H,(V)]AV=aM(V). (52) 

The approximate-factorization scheme consists of Eqs. (49) and (52). For purely 
finite-difference approximations some analytical results are available for selecting 
optimal values for the parameters a and o [9]. No similar results are yet available 
for the present application. By analogy with the finite-difference case we have chosen 
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o to be of order unity and have selected a sequence of a’s in a range [a,, a,,] by the 
rule 

(53) 

where K denotes the number of distinct a’s. The choices of a, and a,, were based in 
part on estimates of the eigenvalue range of the discrete operators and in (much 
greater) part by trial and error. Fortunately, the AFl scheme is not very sensitive to 
these parameters. 

For single-grid solutions to the subcritical potential-flow problem the 
pseudospectral AFl scheme based on Eq. (43) has proven satisfactory [ 151. 
Extensive work on finite-difference methods for supercritical potential flow has 
indicated the necessity to base their approximate-factorization schemes on 

(54) 

where s is a physical variable directed along the streamline. One scheme which 
models this behavior is referred to as AF2 [5]. A pseudospectral AF2 variant is 
described in [ 151. Since schemes of the AF2-type model hyperbolic equations, they 
are relatively ineffective at damping high-frequency error components. Indeed, in the 
pseudospectral single-grid implementations [ 151 for supercritical flow, an iterative 
strategy involving both AF2 and AFl was found to be more effective than AF2 
alone. (By itself, of course, AFI was divergent.) This will be referred to below as the 
AF2/AF 1 scheme. 

V. NUMERICAL RESULTS FOR LINEAR PROBLEMS 

We chose a series of test problems to bridge the gap between the spectral multigrid 
methods described in [ 171 and those required for the potential-flow problem. The first 
step was to change the relaxation scheme from preconditioned Richardson iteration 
to approximate factorization. The boundary conditions were left as Dirichlet in both 
coordinate directions. The next phase involved shifting to periodic boundary 
conditions in one direction. In the final stage the geometry was altered from a 
rectangle to an annulus with an inner radial boundary condition of Neumann rather 
than Dirichlet type. This last problem is about as close as one can come to the 
potential-flow problem within the constraint of linearity. 

The multigrid codes used a maximum of four levels. These are labeled by the index 
k, where k = 2, 3, 4, or 5. The grid on level k contains either 2k (Fourier) or 2k + 1 
(Chebyshev) collocation points in a coordinate direction (including boundary points). 
Two different schedules were used; they were referred to as schedules B and D in 
[ 171. For schedule B, the problem was first solved on level 2; then that solution was 
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interpolated to level 3 as the initial guess for a multigrid iteration involving levels 2 
and 3; then the converged level 3 solution was interpolated to level 4 as its initial 
guess, and so on until level 5. For schedule D, the multigrid process simply began on 
level 5. In both cases the initial guess consisted of random numbers chosen from 
(0, l), ensuring that all error components were present initially. Both schedules were 
run in a fixed mode with six relaxations (two passes through a three-parameter 
sequence) before restriction to a coarser grid. A coarse-grid solution was deemed 
acceptable for prolongation to a fine grid whenever its RMS residual dropped below 
0.1% of the last residual on the finer grid. All of these linear runs employed the 
correction scheme; i.e., Eq. (24) rather than Eq. (16) was solved on the coarser levels. 
The variable coefficients and the right-hand sides for the coarse-grid problems were 
filtered in the manner described in [ 171. 

The specific measure of efficiency used was the equivalent smoothing rate. In some 
preliminary calculations the average time t0 required for a single line-grid relaxation 
was determined. For an actual multigrid calculation, let rl and rz be the RMS 
residuals after the first and last line-grid relaxations, respectively, and let r be the 
total CPU time. Then the equivalent smoothing rate was taken as 

12 

t ) 
ll(rlr,- 1) 

- 

r1 

Rectangular Chebyshev-Chebyshev Problem 

The problem class is the same one examined in [ 171, 

(55) 

(56) 

on (-1, 1) x (-1, 1) with Dirichlet boundary conditions with 

a(x, y) = 1 $ ~eCoSman(x+y), (57) 

and f(x, y) and the boundary data chosen so that the solution is 

u(x, y) = sin(m,rcx t n/4) sin(m,ny + 7r/4). (58) 

The properties of three test cases are listed in Table I. The parameters used in the 
approximate-factorization scheme are given in Table II. 

The performance of the preconditioned Richardson (PR) and the approximate- 
factorization (AF) methods is shown in Table III. The PR method is about twice as 
fast as AF on these problems. Recall, however, that the PR scheme has been highly 
tuned (especially for problem 1); whereas the AF scheme was subjected to only a 
small amount of trial and error tuning. No doubt the AF scheme would benefit 
greatly from more experimentation, not to mention analysis. We have been content 
with establishing its workability in this multigrid context. 
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TABLE I 

Characteristics of the Rectangular Chebyshev-Chebyshev 
Test Problems 

Problem No. E mu ma 

1 0.00 1 1 
2 0.20 2 2 
3 1.00 5 5 

TABLE II 

Parameters of the AF Scheme for the Rectangular 
Chebyshev-Chebyshev Problems 

2 1 6 1.4 
3 8 15 1.2 
4 80 1000 1.1 
5 600 8000 1.0 

TABLE III 

Equivalent Smoothing Rates on the Rectangular 
Chebyshev-Chebyshev Problems 

Problem No. 

1 
2 
3 

PR AF 

0.26 0.43 
0.58 0.78 
0.78 0.92 

TABLE IV 

Residual Evaluation Time for the AF Scheme on the 
Rectangular Chebyshev-Chebyshev Test Problems 

Level 
Transform method 

differentiation 
Matrix-multiply 
differentiation 

3 0.0204 0.0083 
4 0.0622 0.0390 
5 0.214 0.248 
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TABLE V 

Characteristics of the Rectangular Chebyshev-Fourier 
Test Problems 

Problem No. 

1 
2 
3 

& mu m, 

0.00 1 1 
0.10 1 1 
0.20 2 2 

When derivative evaluations are performed via FFTs, the time required on a CDC 
CYBER 175 for a single level 5 relaxation (including both the residual evaluation 
and factorization stages) is 0.248 set for PR and 0.238 set for AF. Only about 5% 
of the total time in these calculations was spent interpolating between levels. On 
average there were four to five relaxations for every interpolation. A comparison 
between the transform and matrix-multiply methods of differentiation is provided in 
Table IV. Only on level 5 (a 33 X 33 grid) does one gain by using FFTs. 
Furthermore, since a sizable fraction of the work for a level 5 solution takes place on 
levels 2 to 4, the total running time is less (by 10 to 20%) for the matrix-multiply 
versions. Bear in mind that assembly language FFTs were performed on grids ideal 
for the FFT (powers of 2). The matrix multiplies were coded in Fortran. In the 
potential-flow application it is advantageous to work on more general grids. Thus, the 
matrix-multiply alternative is highly competitive. Its advantage should extend to even 
larger grids on vector processors. 

Rectangular Chebyshev-Fourier Problem 

This problem is also described by Eq. (56), but on (-1, 1) x (0,27r) and with 
Dirichlet boundary conditions in x and periodicity in y. The coefftcient 

a(x, y) = 1 + cecosmJnx+Y) 

and the rest of the problem tits the solution 

u(x, y) = sin(m,rf-x + 71/4) sin(m,n cos y + x/4). (60) 

TABLE VI 

Parameters of the AF Scheme for the Rectangular 
Chebyshev-Fourier Problems 

Level al ah 0 

2 0.5 6 I.0 
3 2.0 15 1.0 
4 10.0 1000 1.0 
5 100.0 8000 1.0 
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TABLE VII 

Equivalent Smoothing Rates on the Rectangular 
Chebyshev-Fourier Problems 

Problem No. AF/B AF/D 

1 0.71 0.75 
2 0.78 0.79 
3 0.82 0.76 

TABLE VIII 

Characteristics of the Annular Chebyshev-Fourier 
Test Problems 

Problem No. a m” m, 

1 0.00 1 1 
2 0.10 1 1 
3 0.20 2 2 

TABLE IX 

Parameters of the AF Scheme for the Annular 
Chebyshev-Fourier Problems 

Level aI ah 0 

2 5 40 2.0 
3 10 600 1.4 
4 100 6000 1.0 
5 1000 10000 1.0 

TABLE X 

Equivalent Smoothing Rates on the Annular 
Chebyshev-Fourier Problems 

Problem No. AF/B AFD 

1 0.82 0.87 
2 0.81 0.87 
3 0.87 0.86 
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plane. The Schwarz-Christoffel factor in the transformation allows the smooth 
mapping of a finite-angle trailing edge. For further details on this particular mapping 
see Jameson [23]. The inner portion of a 16 X 48 grid is shown in Fig. 1. 

In the computational plane, with o = Reie, the potential equation becomes 

(65) 

where @ is the velocity potential and p is the density, given by the isentropic relation 

p= 1 -+p(q’+q;- q-l). 
[ 

I > 

the ratio of specific heats is denoted by y, the Mach number at infinity is denoted by 
M,, and the velocity components in the physical (r, 0) plane are 

1 a@ 
4,=yQg- (67) 

1 a@ -- 4@= R&y a@’ (68) 

with 

(69) 

FIG. 1. Grid about NACA 0012 airfoil. 
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The boundary conditions at the surface and in the farlield are 

atR=l (70) 

~~RcosO+Etan-‘[~~tan0] asR-+co. (71) 

The first term in the farlield boundary condition describes the uniform freestream 
flow. The remaining term is the first-order lifting term; it is derived in [24]. The 
quantity E is known as the circulation. It is determined by the Kutta condition, which 
states that the physical velocity at the trailing edge must be finite. Since Z = 0 at the 
trailing edge, the Kutta condition reduces to 

a@ 0 ao= at u= 1. (72) 

The singularity of the potential in the fartield poses difficulties (especially for 
spectral methods) that are best handled by computing in terms of the reduced 
potential G, which is defined by 

G=@- R+$ cosO-Etanl[~~tanO] 
i ) 

(73) 

and is assumed to be periodic in 0. The derivatives of @ which appear in Eqs. (65), 
(67), and (68) are replaced with numerical derivatives of G plus analytical derivatives 
of the last two terms in Eq. (73). The boundary conditions on G are 

aG-(-j 
ZT- atR=l, (74) 

G+O asR-t co, (75) 

and the Kutta condition. 
The spectral method employs a Fourier series representation in 0. Constant grid 

spacing in 0 corresponds to a convenient dense spacing in the physical plane at the 
leading and trailing edges. The domain in R (with a large, but finite outer cutoff) is 
mapped onto the standard Chebyshev domain [-1, l] by an analytical stretching 
transformation that clusters the collocation points near the airfoil surface. The 
stretching is so severe that the ratio of the largest-to-smallest radial intervals is over 
1000 for the grid whose inner portion is illustrated in Fig. 1. The transformation is 
incorporated into the operator which represents differentiation in the R direction. 

Despite its nonlinearity the potential-flow problem remains fairly straightforward 
so long as the flow is everywhere subsonic. The real difficulty of the problem arises 
when the flow forms a supersonic bubble on the airfoil. The potential equation is then 
of mixed elliptic-hyperbolic type and admits weak solutions with discontinuities. 
Both compression and expansion shocks will appear unless an artificial viscosity with 
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a directional bias is introduced into the equation in the supersonic region. The most 
expedient technique for dealing with this is to use the artificial density approach of 
Hafez et al [25]. The original artitical density is 

p’=p -/lJp (76) 

with 

p=max!O,l--$1, (77) 

where M is the local Mach number and 8, is an upwind first-order (undivided) 
difference. 

Naturally, the use of such an artifice disturbs both the formal and numerically- 
observed accuracy of the solution in supersonic regions, when the order of the 
discretization used is higher than that of the artificial viscosity term introduced. An 
artificial viscosity form was developed by Jameson [ 131 which is formally second 
order in smooth supersonic regions and drops to first order in the vicinity of a shock 
to provide additional damping there. A corresponding approach with artificial density 
is 

F=p -p[& - vk’p] (78) 
where 

v=max{O, 1 --K-’ ]SOp]} (79) 

and E-' is the backward shift operator, and 6’ is the central first-difference operator. 
If K is chosen to be of the order of the density jump across the shock, then the above 
statements about the order of accuracy of the density bias are fulfilled. Since virtually 
all available finite-difference schemes for solution of the potential equation for tran- 
sonic flow are no higher than second order, the use of second-order artificial viscosity 
terms introduces little additional error. However, spectral discretization typically 
shows much higher accuracy than second order for smooth problems. One would 
expect this second-order modification of the spectral discretization to lower the order 
of the solution. The results obtained by Streett [ 151, however, showed distinctly 
higher-order behavior. 

The first pseudospectral solutions to the compressible potential-flow problem were 
obtained by Streett [15,26], using a single-grid version of the approximate- 
factorization iterative scheme described in Section IV. For subcritical flows this 
method was already highly competitive with state-of-the-art finite-difference methods. 
For supercritical flows, however, the single-grid pseudospectral scheme was quite 
inefficient, even with the use of the AF2 extension of the approximate-factorization 
scheme. This problem, then, poses a useful application of the spectral multigrid 
approach and, as as the results indicate, a dramatic demonstration of its effectiveness. 

581/57/l-5 
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VII. RESULTS FOR POTENTIAL FLOW PAST AN AIRFOIL 

The numerical examples of this section have been chosen primarily to illustrate the 
effectiveness of the multigrid approximate-factorization (MG/AF) solution scheme in 
comparison with the earlier single-grid approximate factorization (SG/AF) method 
[ 151 for solving the spectral equations for potential flow. A secondary issue is the 
comparative quality of this spectral discretization and of widely-used finite-difference 
approximations. A by-product of these examples is some practical guidelines for the 
multigrid algorithms. 

Three test problems suffice for a comprehensive treatment of the spectral multigrid 
efficiency and spectral discretizaton accuracy issues: A subcritical lifting airfoil, a 
supercritical nonlifting airfoil, and a supercritical lifting airfoil. These have been 
listed in order of increasing difficulty. Detailed comparison of the spectral SG/AF 
and MG/AF schemes will be provided for the first two examples. Extensive 
comparisons are also made for all three problems between the spectral MG/AF 
scheme and two popular finite-difference codes: TAIR [7], a single-grid/AF2 method, 
and FL036 [13], a multigrid/AF method. 

Some of the relevant issues have already been discussed in [ 151. The most sensitive 
matter is surely the weighing of the efficiency of two schemes (spectral and finite- 
difference) with different accuracy and convergence properties. The reader is directed 
to [ 151 for a more detailed discussion than is provided here. 

Three different grids have been used (with the coarser levels in parentheses): 
16 x 32 (12 x 16 and 8 X 8); 16 x 48 (14 x 32, 12 x 16, and 8 x 8); and 18 x 64 
(16 X 48, 14 x 32, 12 X 16, and 8 X 8). Note that in passing to a coarser level the 
grid is typically reduced by less than a factor of 2 in each coordinate direction. This 
choice leads to a significant improvement over the standard gridding for the spectral 
potential-flow problem, especially in the supercritical regime where the solution has 
large high-frequency content. 

This problem has the added complication of a highly-stretched grid in the radial 
direction. This is accounted for by changing the spectral differentiation matrices from 
C-‘DC (see Eq. (2)) to 

0 = BC-‘DC, W-9 

where B is a diagonal matrix which contains the Jacobian of the transformation. A 
substantial improvement in the spectral multigrid algorithm results from defining the 
coarse-grid differentiation matrices directly by Eq. (39) rather than by the coarse-grid 
version of Eq. (79). In the absence of stretching these two definitions are equivalent. 
Equation (39) is easily and efficiently implemented with matrix-multiply techniques. 

Virtually all the spectral multigrid results included here were obtained with the 
same fixed schedule: Start on the finest grid, work down to the coarsest grid and then 
back up to the finest grid; on the way down there is one sweep though the three- 
parameter sequence and on the way up there are two sweeps. 
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-2.0 r 

FIG. 2. Comparison of surface pressure coefficient distributions. Spectral: 16 x 32 points (symbols). 
FL0 36: 32 x 192 points (line). NACA 0012, M= 0.5, a = 4O. 

Subcritical Lifting Airfoil 

The flow past an NACA 0012 airfoil at 4’ angle of attack and a freestream Mach 
number of 0.5 will serve as the first test case. The airfoil produces a fairly large lift 
coefftcient at these conditions and the surface pressure distribution shows a sharp 
suction peak near the leading edge. Since the local Mach number in this peak is 
nearly 1, compressibility effects are substantial. 
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FIG. 3. Surface pressure coefficient from expanded spectral solution. 16 x 32 points. NACA 0012, 
M = 0.5, a = 4”. 
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FIG. 4. Maximum residual vs machine time. Multigrid and single-grid schemes. NACA 0012, 
M= 0.5, a = 4'. 

In order to demonstrate that the spectral solution on a relatively coarse grid 
captures all the essential details of the flow, we first compare it with an extremely 
accurate fmitedifference result. In Fig. 2 is shown the surface pressure coefficient 
from a spectral solution using 16 points in the radial (R) direction and 32 points in 
the azimuthal (0) direction; the symbols denote the solution at the collocation points. 
For comparison, the result from the finite-difference code FL036 is shown as a solid 
line. The grid used in the benchmark finite difference calculation is so fine 
(64 X 384 points) that the truncation error is well below plotting accuracy. The 
spectral calculation seems to lack detail near the leading-edge suction peak. However, 
since the spectral solution is actually a continuous representation of the solution, it 
may be expanded in terms of its basis functions onto a much finer mesh. Such an 
expansion, shown in Fig. 3, reveals the hidden detail of the solution. The FL036 and 
expanded spectral results are identical to plotting accuracy. The spectral computation 
on this mesh yields a lift coefficient with truncation error less than 10p4. Spectral 
solutions on a 16 x 32 grid are thus of more than adequate resolution and accuracy 
for subcritical flows. 

The convergence histories for both the SG/AF and the MG/AF spectral schemes 
on this test case are displayed in Figs. 4 and 5. The convergence histories have been 
supplied for both the maximum residual (Fig. 4) and the error in circulation (Fig. 5). 
They are plotted against machine time on a CDC CYBER 175 computer. Although 
the multigrid code (henceforth referred to as “MGAFSP”) shows a substantial 
improvement over the single-grid approximate-factorization code (“AFSP”) in 
maximum residual convergence, the gain is even more dramatic from the lift 
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AFSP 

MGAFSP 
3 GRIDS 

0 20. 40. 60. 80. 

T (set - CYi75) 

FIG. 5. Error in lift vs machine time. Multigrid and single-grid schemes. NACA 0012, M= 0.5, 
cf=4o. 

convergence standpoint. This is understandable since the lift is predominantly a low- 
frequency property of the solution. The single-grid spectral approximate-factorization 
scheme was recognized to be weak in damping for long-wavelength error components 
[151* 

The consensus in the computational transonics community appears to be that 

MGAFSP 
16 x 32 
3 GRIDS 

4 
0. 4. 8. 12. 16. 

T (set - CY175) 

FIG. 6. Maximum residual vs machine time. NACA 0012, M = 0.5, (I = 4? 
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.B 

1.2 c 

FIG. 7. Comparison of surface pressure coeffkient distributions. TAIR: 30 x 149 points (symbols). 
FL0 36: 32 x 192 points (line). NACA 0012, M = 0.5, a = 4”. 

TAIR is the fastest widely-available finite-difference code. A comparison of 
maximum residual versus machine time for TAIR and MGAFSP on the subcritical 
test case is shown in Fig. 6. The two codes require nearly equivalent machine time 
with TAIR showing a better asymptotic convergence rate. However, the TAIR result 
was produced on a rather coarse (default) finite-difference mesh of 30 X 149 points. 
Compared with the surface pressure results from MGAFSP and FL036, the TAIR 
result is significantly in error near the leading edge (Fig. 7). This is indeed truncation 

10. 20. 30. 40. 50. 

T (set - CY175) 

FIG. 8. Maximum residual vs machine time. NACA 0012, M = 0.5, a = 4”. 
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error, because TAIR results on a 60 x 297 mesh are more in agreement with those of 
MGAFSP and FL036. A further indication of the somewhat large truncation error of 
the TAIR result is that the predicted drag and lift coefficients are correct to only two 
decimal places (subcritical potential flow yields identically zero drag). 

In Fig. 8 are shown convergence histories from TAIR, FL036, and MGAFSP on 
meshes which yield approximately equivalent accuracy; the surface pressure results 
are the same to plotting accuracy, the lift coefficient is converged in the third decimal 
place, and the predicted drag coefficient is less than 0.001. (Actually, the spectral 
result is an order of magnitude more accurate than these limits, but the TAIR result 
barely meets them.) As can be seen from Fig. 4, the single-grid AFSP result would 
fall in the vicinity of the FL036 and TAIR results in the present figure. 

Use of more than three grids in the spectral multigrid code did not yield an 
improvement in effective convergence, since the interpolation overhead became a 
greater proportion of the total work. It would have been desirable to use a lowest grid 
coarser than 8 x 8 in the multigrid cycle. Unfortunately, due to the presence of the 
metric singularity at the trailing edge, coarser mesh results were so oscillatory as to 
provide no useful long-wavelength information. 

Supercritical Nonlifting Airfoil 

The test is again the NACA 0012 but at M, = 0.8 and with zero angle of attack, 
i.e., a nonlifting condition. The surface pressure coefficient distribution as computed 
by the spectral method on an 18 X 64 grid is displayed in Fig. 9. The shock at mid- 
chord is relatively strong; the normal Mach number ahead of the shock is approx- 
imately 1.25. The shock is spread over several mesh spaces by the finite-difference 
artificial viscosity used in the spectral calculation. Although this shock is already far 
sharper than those produced by finite-difference codes on a comparable grid, it 
should be possible to capture the shock in a still smaller region with a spectral 
method employing an artificial viscosity more suited to the spectral discretization. 

-1.6 

% 
-1.2 

FIG. 9. Surface pressure coefficient spectral solution: 18 x 64 points. NACA 0012, M = 0.8, a = 0. 
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The convergence histories for the SG/AF scheme (combining AF2 and AFl) and 
the MG/AF scheme (using AFl alone) on a fine grid are shown in Fig. 10. The 
multigrid scheme obviously shows a much higher asymptotic convergence rate. Note 
that the single-grid scheme initially oscillates with the maximum residual of order 
unity for a rather lengthy period. This is indicative of the lack of high-frequency 
damping in the AF2 scheme. The flow field is being established in this period by the 
AF2 scheme; the plot of the history of the number of supersonic points in Fig. 11 
shows that the AF2 scheme establishes the shock position and the size of supersonic 
region nearly as fast as the multigrid scheme, albeit with some transient overshoot. 
This rapid establishment of the flow field is at the expense of high-frequency error, 
which is subsequently damped when the AF2/AFl alternate cycling is begun. The 
multigrid algorithm, however, monotonically establishes the flow field and damps 
high-frequency errors in a far more efficient manner. 

Experience with all forms of transonic potential flow calculations has shown that 
convergence rates are quite sensitive to the order and amount of artificial viscosity: 
more artificial viscosity generally yields faster convergence, but at the expense of 
more widely smeared shocks. Multigrid schemes have been especially sensitive to 
these effects and the present one is no exception. However, the large improvement in 
efficiency offered by the multigrid over the previous single-grid spectral scheme has 

1. 1 

0. 100. 200. 300. 400. 500. 

T (set - CYl75) 

FIG. 10. Maximum residual vs machine time. Multigrid and single-grid schemes. NACA 0012, 
M = 0.8, a = 0. 
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0. 20. 40. 60. 80. 100. 

T (set - CY175) 

FIG. 11. Number of supersonic points vs machine time. Multigrid and single-grid schemes. 
NACA 0012, M = 0.8, a = 0. 

allowed the use of much finer grids, offsetting the present, uncomfortably large 
artificial viscosity. 

Supercritical Lifting Airfoil 

The lifting supercritical test case was the NACA 0012 at M, = 0.75 and cz = 2”, 
which yields a section lift coefficient of nearly 0.6. A shock appears only on the 
upper surface for these conditions and is rather strong for a potential calculation; the 
normal Mach number ahead of the shock is about 1.36. Lifting supercritical test 
cases are especially difficult for spectral methods since the solution will always have 
significant content in the entire frequency spectrum; the lift is predominantly a low- 
frequency quantity, whereas the discontinuity in the derivative of the potential (at the 
shock) is responsible for substantial high-frequency content. An iterative scheme 
therefore must be able to damp error components across the spectrum. The AF2/AFl 
scheme of [ 151 was somewhat unreliable for such problems; so a comparison will not 
be shown between AF2/AFl and the multigrid scheme. 

A history of the surface pressure coefficient is supplied in Fig. 12. This 
demonstrates the rapid convergence of the entire frequency spectrum of the solution. 
Pressure distributions are shown after 0, 1, 4, and 9 cycles of the fixed-cycle 
algorithm; one cycle requires approximately 5 seconds of CYBER 175 time. The 
shock overshoot seen in the 4-cycle frame is a phenomenon associated with the final 
positioning of the shock by the multigrid scheme. The finite-difference multigrid 
scheme exhibits similar behavior [ 131. 

All of the supercritical spectral multigrid calculated shown thus far used a 
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b 

d 

FIG. 12. History of surface pressure coefficient distribution spectral solution: 18 X 64 points. 
NACA 0012, M = 0.75, a = 2”. (a) Initial condition. (b) After 1 cycle. (c) After 4 cycles. (d) After 9 
cycles. 

-2.0 r 

b 1.2 t: 

FIG. 13. Surface pressure coefficient distribution spectral solution: 16 x 48 points. NACA 0012, 
M = 0.75, a = 2”. (a) Collocation points. (b) Expanded. 



SPECTRAL MULTIGRID METHODS 13 

-1.6 
CP 

-1.2 

T 
./ 

/....... . ..-. 

. ..‘ 

-.,q .! 

-.‘I . 
. 

O oy*i**o 

1: 

. . ...’ 
.C’.. . . . . . .._.. 

.4 : 

.,i ; 

.. 1 

FIG. 14. Surface pressure coefficient distribution spectral solution: 18 x 64 points. NACA 0012, 
M = 0.75, a = 2”. (a) Collocation points. (b) Expanded. 
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FIG. 15. Surface pressure coeffkient distribution. NACAO012, M=0.75, a=2O. TAIR: 
30 x 149 points. 
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FIG. 16. Surface pressure distribution. FL0 36: 32 X 192 points. NACA 0012, M = 0.75, a = 2”. 

sequence of five rather than three grids, mostly due to the finer-finest grid used for 
these cases. Scheduling within the fixed-cycle multigrid algorithm was much the same 
as for the subcritical cases: One or two passes through the time-step sequence were 
made on each grid. Convergence for supercritical cases is not always monotonic 
because adjustments in lift or shock position can introduce high-frequency errors 
which may require an extra cycle to damp. An adaptive cycle algorithm might be of 
benefit here provided that the “limit cycle” problem was avoided. 
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MGAFSP’ 
18 x 64 
5 GRIDS 

MGAFSP 
16 x 48 
4 GRIDS 

0. 20. 40. 60. 80. 100. 120. 

T (set - CY175) 

FIG. 17. Maximum residual vs machine time. NACA 0012, M= 0.75, a = 2O. 
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Surface pressure distributions, both at the collocation points and spectrally 
expanded onto finer spacing, are shown in Figs. 13 and 14 for grids of 16 x 48 and 
18 x 64 points, respectively. As can be seen, the coarser-grid result predicts virtually 
the same shock position as the finer-grid computation; the lift coefficients agree to 
1%. These results may be compared with those from the finite-difference codes, 
TAIR and FL036, shown in Figs. 15 and 16, respectively. The shock predicted by 
TAIR is far more rounded and smeared than that of FL036, reflecting the coarser 
mesh and larger artificial viscosity used in the former. The TAIR result shown is also 
only correct to one decimal place in lift as compared with a finer-grid result. 
Convergence histories for these four cases, spectral multigrid (16 x 48) and 
(18 x 64), TAIR (30 x 149), and FL0 36 (32 x 192), are shown in Fig. 17. The 
spectral results are obviously handicapped in this comparison by the necessity of 
such fine (for spectral methods) meshes brought about by the use of the finite- 
difference artificial viscosity form. Perhaps the purely spectral shock-capturing 
methods currently under development will permit sharp shocks to be captured with 
still coarser meshes. 

VIII. CONCLUSIONS 

Spectral multigrid methods are still in their infancy. Nevertheless, they have 
already exhibited the capacity to accelerate drastically iterative schemes for 
nonlinear, as well as linear, problems. Rough estimates of the asymptotic convergence 
rates indicate that the multigrid procedure has led to an improvement over the single- 
grid spectral method of nearly a factor of 10 for subcritical cases: the improvement is 
considerably greater for supercritical situations. 

The worth of the spectral discretization itself for compressible flows is now clear: 
Equivalent solutions are indeed obtained with far fewer grid points than are required 
for finite-difference solutions. Since subcritical flows are smooth, the present results, 
showing both that the spectral method convergence rate is far better than second 
order and also that its absolute error level is lower than finite-difference ones even on 
unreasonably coarse grids, are no surprise. Undeniably, any shock discontinuity in 
supercritical flow should produce some degradation in the formal accuracy of the 
spectral solution. Nonetheless, grid refinement studies demonstrate that the spectral 
solutions stabilize on far coarser grids than do finite-difference solutions. Coupled 
with multigrid solution techniques, spectral methods for steady compressible flows 
have reached the stage at which they are truly competitive with finite-difference 
methods on problems of aerodynamic interest. 

Several aspects of this technique have to be improved before spectral methods for 
compressible flows reach their full maturity. The present relaxation schemes are just 
straightforward modifications of the ones used for finite-difference methods. Surely 
relaxation schemes more tuned to the spectral discretization can and will be devised. 
There is also the clear need to develop more suitable forms of artificial viscosity for 
capturing shocks by spectral methods. 
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